Money.plTechnologieNauka i wiedzaWzory matematyczne

Wzory matematyczne

Bramki logiczne

Bramką logiczną nazywamy prosty układ elektroniczny realizujący funkcję logiczną, której argumenty oraz sama funkcja może przybierając jedną z dwóch wartości, np. 0 lub 1. Zmienne logiczne mające wartość 0 nazywane są stanem logicznym niższym,...

Ciąg Fibonacciego

Ciąg Fibonacciego nazywamy ciąg liczb naturalnych, w którym każdy kolejny wyraz jest sumą dwóch poprzednich. Jest to tzw. ciąg rekurencyjny i jest pierwszym ze znanych ciągów tego rodzaju. Został on przedstawiony przez Leonarda z Pizy, zwanego...

Dominanta

Dominanta nazywana jest również wartością modalną, wartością typową. Dominanta jest wartością cechy, która w zebranych danych statystycznych pojawia się najczęściej. Jako jedyna miara wykorzystywana jest w przypadku cech niemierzalnych.   Jak...

Dwumian Newtona

Dwumian Newtona nazywany jest również wzorem dwumianowym lub wzorem Newtona. Wzór ten wyraża naturalną potęgę sumy dwóch składników przez potęgi tego składniku. Potęgę dwumianu można rozwinąć w sumie jednomianów postaci W każdym z tych...

Dystrybuanta

Dystrybuanta jest funkcją rzeczywistą w rachunku prawdopodobieństwa czy statystyce. Jest ona funkcją zmiennej rzeczywistej wyznaczająca prawdopodobieństwo. Zawiera ona wszystkie informacje o rozkładzie prawdopodobieństwa. Dystrybuanty są...

Dziedzina funkcji

Poprzez dziedzinę funkcji rozumiemy zbiór argumentów, dla których możemy obliczyć wartość funkcji. W przypadku gdy dany jest wykres funkcji, argumenty funkcji występują na poziomej osi układu współrzędnych. Dziedzina może być ograniczona do...

Funkcje trygonometryczne

Funkcje trygonometryczne to funkcje matematyczne definiujące się jako stosunki długości odpowiednich dwóch boków trójkąta prostokątnego względem jego kątów wewnętrznych.Wyróżniamy następujące funkcje trygonometryczne: - sinus - stosunek długości...

Iloczyn wektorowy

Iloczyn wektorowy jest operacją, w wyniku której otrzymujmy nowy wektor. Wektor jest produktem mnożenia dwóch innych wektorów. Określa on wiele istotnych wielkości wektorowych zawartych w nauce i technice.   Iloczyn wektorowy wektorów i...

Kombinatoryka

Kombinatoryka to problematyka matematyczna zajmująca się wyznaczeniem liczby elementów zbiorów skończonych. Kombinatoryka powstała dzięki grom hazardowym a wykorzystywana jest do rozwiązywania zagadnień rachunku prawdopodobieństwa, odnoszących się...

Korelacja

Korelacja (współzależność cech) określa wzajemne powiązania między wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek  oraz siłę. Korelacja ma duże znaczenie podczas zaawansowanych metod analitycznych.Rodzaje...

Macierz odwrotna

Macierz odwrotna jest to macierz, która w wyniku iloczynu daje w wyniku macierz jednostkową.   Odwracanie macierzy Macierz odwrotna do macierzy kwadratowej A stopnia n, to taka macierz kwadratowa stopnia n, oznaczana zwykle jako A-1, która...

Miejsce zerowe funkcji

Miejsce zerowe – w matematyce wartość argumentu funkcji, dla którego przyjmuje ona wartość zerową. Miejsce zerowe nazywane jest również zerem funkcji bądź jej pierwiastkiem. Miejsce zerowe możemy odczytać za pomocą wykresu funkcji.   W...

Mnożenie macierzy

W matematyce macierz uznawana jest za układ liczb, symboli lub wyrażeń zapisanej w postaci prostokątnej tablicy. Wyróżniamy macierze jednowskaźnikowe, które nazywane są wektorami wierszowymi lub kolumnowymi, macierze dwuwskaźnikowe –...

Potęgowanie

Potęgowanie to działanie matematycznie ułatwiające zapis wielokrotnego mnożenia. Symbol potęgi został wprowadzony aby w prosty sposób zapisywać długie iloczyny takich samych liczb .Potęgowanie jest działaniem odwrotnym do pierwiastkowania.obie...

Rozkład normalny

Rozkład normalny nazywany jest również rozkładem Gaussa lub Krzywą Gaussa. Jest on podstawowym teoretycznym rozkładem prawdopodobieństwa w statystyce. Rozkład normalny opisuje sytuacje, gdzie większość przypadków jest bliska średniemu wynikowi....

Schemat Hornera

Schemat Hornera jest metodą obliczania wartości wielomianu dla danej wartości argumentu. Ilość mnożeń jest zredukowana do minimum. Jest to również algorytm dzielenia wielomianu W(x) przez dwumian x - c. Schemat ten powiązany jest z nazwiskiem...

Silnia

Silnia liczby naturalnej n (n!) nazywana jest iloczynem kolejnych liczb naturalnych od 1 do n. Silnię oznaczamy symbolem n!, które zostało wprowadzone przez francuskiego matematyka Christiana Krampa w 1808 roku.   Definicja rekurencyjna...

Wartości funkcji trygonometrycznych

Funkcje trygonometryczne określają stosunki między długościami boków w trójkącie prostokątnym względem miar jego katów wewnętrznych. Do funkcji trygonometrycznych zalicza się obecnie - sinus, - cosinus, - tangens, - cotangens Funkcje...

Wielomiany

Wielomiany to wyrażenia algebraiczne, na które składają się zmienne i stałe połączone działaniem dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Wzór wielomianuWielomianem stopnia n zmiennej rzeczywistej x...

Wyznacznik macierzy

Wyznacznik Macierzy jest jednym z najważniejszych pojęć algebraicznych. Stworzenie teorii wyznaczników wiąże się z problemem znalezienia ogólnego wzoru na rozwiązanie układu n równań liniowych o n niewiadomych. Wzory te zostały podane w XVIII...

Wzory redukcyjne

Wykorzystanie wzorów redukcyjnych pozwala wyrazić wartość funkcji trygonometrycznych dowolnego kąta α za pomocą odpowiedniej funkcji trygonometrycznej kąta ostrego.W sytuacji gdy jeden z argumentów zmienia się nieparzystą wielokrotność kąta...

Wzory trygonometryczne

Trygonometria jest działem matematyki zajmującym się badaniami związków miarowych między bokami i kątami trójkątów. Swój rozwój zawdzięcza potrzebom żeglugi morskiej oraz zagadnieniami pomiarów na powierzchni Ziemi. Znaczący wpływ na trygonometrię...

Wzór na siłę zachowawczą

Siła jest zachowawcza jeśli całkowita praca wykonywana przez nią nad cząstką poruszającą się po dowolnym torze zamkniętym, tzn, powracającą po pewnym czasie do punktu wyjściowego jest równa zero. Siłę określa się jako zachowawczą jeżeli całkowita...

Wzór Herona

Wzór Herona to wzór, który umożliwia obliczenie pola (S) trójkąta, jeśli znane są długości a, b i c jego boków. Wzór znany był już Archimedesowi, a jego nazwa pochodzi od Herona, w którego Metryce jest podany. Niech  oznacza połowę obwodu...

Wzór na absorpcję

Absorpcja w optyce oznacza proces pochłaniania energii fali elektromagnetycznej. Mechanizm absorpcji polega na podziale absorbowanego składnika pomiędzy dwie fazy (ośrodki) objętościowe. Zjawisko to jest związane z reakcjami chemicznymi pomiędzy...

Wzór na alkohol

Alkohole są pochodnymi węglowodorów, które mają w cząsteczkach grupę funkcyjną –OH, zwaną grupą hydroksylową (wodorotlenową). W temperaturze pokojowej jest to bezbarwna, łatwopalna ciecz o charakterystycznej woni i piekącym smaku. Na...

Wzór na amplitudę drgań wymuszonych

Amplituda drgań wymuszonych zależy od częstości drgań wymuszających . Gdy jest bliskie częstotliwości drgań własnych oscylatora , to amplituda rośnie i osiąga maksimum dla częstości drgań własnych zwanych częstością rezonansową.Wzór na amplitudę...

Wzór na bilans cieplny

Bilans cieplny w termodynamice definiuje się jako równanie opisujące sumę procesów cieplnych określonego układu termodynamicznego. W pewnym sensie kompletny zapis bilansu cieplnego jest równoważny sformułowaniu I zasady termodynamiki dla...

Wzór na błąd bezwzględny

Błąd bezwzględny to różnica między wartością przybliżoną a wartością prawdziwą. Według innej definicji poprzez błąd bezwzględny wartości przybliżonej rozumie się dowolną wartość nie mniejszą, od wartości bezwzględnej różnicy między wartością...

Wzór na błąd względny

Błąd względny to iloraz błędu bezwzględnego i wartości dokładnej (często wyrażany w procentach).W metrologii służy głównie do oceny dokładności przyrządów pomiarowych pracujących na różnych zakresach pomiarowych. W statystyce porównywane są w ten...

nowsze
1 2 3 4 5 6